

C-Glycosides: A Stereoselective Synthesis of α -C-Galactosamines with a Glycosyl Dianion

Fred Burkhart and Horst Kessler*

Institut für Organische Chemie und Biochemie der Technischen Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany

Received 22 September 1997; accepted 31 October 1997

Abstract: α -C-glycosides of the galactosamine can be obtained from the configurationally stable α -glycosyl dianion which can be prepared by reductive lithiation of the chloride. Different electrophiles react selectively at the anomeric center. \bigcirc 1997 Elsevier Science Ltd. All rights reserved.

During the last years *C*-glycosides have achieved growing interest due to their biological potential and their synthetic applications.¹ Despite the importance of 2-acetamido-2-deoxy-galactosides in biological systems, only a few syntheses of their *C*-glycosides are reported.^{2,3}

In previous work, the synthesis of C-glycosides with glycosyl dianions was reported for glucose ⁴ and glucosamine.⁵ Herein we present the synthesis of α -C-galactosamines using this dianion strategy. Only carbon dioxide and aldehydes were used as electrophiles for the C-glycoside synthesis as the conversion of the glucosamine dianion with other electrophiles such as cyanides, halides and acyl chlorides gave poor yields of the corresponding C-glycosides.

As outlined in **Scheme 1**, the synthesis started out with 1 which was obtained from 2-azido-3,4,6-tri-*O*-benzyl-2-deoxy-D-galactopyranose ⁶ by hydrogenolysis and subsequent reaction with acetic anhydride. After recrystallization from methanol 1 was treated with thionyl chloride to give the corresponding chloride 2.

Scheme 1. Synthesis of the the α -C-glycosides. Reagents and conditions: (I) SOCl₂, CHCl₃/PhCH₃ 1:1, rt, 20 min (II) 1.2 eq n-BuLi, THF, -90°C, 1 min, (III) 2.2 eq lithium naphthalenide (LN), -90°C, 10 min (IV) 1.5 eq electrophile, 1 min, -90°C (V) NH₄Cl_{aq}.

The dianion intermediate 3 was obtained from 2 by deprotonation with butyllithium and reductive lithiation with lithium naphthalenide. Treatment of the dianion 3 with deuterated methanol gave the desired

compound 4 in 75% yield. This deuteration experiment showed an α : β ratio of approximately 25:1. Only 2-3% of the nondeuterated compound were found. The reaction of 3 with benzaldehyde and isobutyraldehyde gave diastereomeric mixtures of 5 a/b (ratio 1.8:1) and 6 a/b (ratio 1.6:1) in 72 and 75% yield, respectively. The heptonic acid 7 was obtained by the reaction of 3 with carbon dioxide in 86% yield after column chromatography (Table 1).

Table 1. Results of *C*-glycosylation.

electrophile	product	R	yield %	a:b
MeOD	4	D	75	
PhCHO	5a/b	CH(OH)Ph	72	1.8:1
iPrCHO	6a/b	CH(OH)iPr	75	1.6:1
CO ₂	7	COOH	86	

As determined by ¹H NMR spectra⁷, the conformations of products 5-7 deviate from the usual 4C_1 chair. This was also observed by *Urban et al.* ² who synthesized α -C-galactosamines promoted by samarium diiodide. Although all α -C-glycosides display a solution conformation deviating from the 4C_1 chair, the X-ray structure analysis of one of these compounds revealed that the 4C_1 conformation is preferred in the solid state.

The attempt to synthesize the β -C-galactosamines in analogy to the β -C-glucosamines resulted in the formation of a trianion so that after the addition of the electrophile the benzyl protecting group at C-3 was alkylated along with the C-1.8

Acknowledgement.

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- a) Postema, M. H. D. *Tetrahedron* **1992**, *48*, 8545-8599. b) Postema, M. H. D. *C-Glycoside Synthesis*, CRC Press, 1995
- ² Urban, D.; Skrydstrup, T.; Riche, C.; Chiaroni, A.; Beau, J. M. Chem. Commun. 1996, 1883-1884 and references cited therein.
- ³ Ayadi, E.; Czernecki, S.; Xie, J. Chem. Commun. 1996, 347-348.
- a) Wittmann, V.; Kessler, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 1091-1093. b) Frey, O.; Hoffmann, M.; Wittmann, V.; Kessler, H.; Uhlmann, P.; Vasella, A. Helv. Chim. Acta 1994, 77, 2060-2069. c) Lesimple, P.; Beau, J. M. Bioorg. Med. Chem. 1994, 2, 1319-1330.
- a) Hoffmann, M.; Kessler, H. Tetrahedron Lett. 1994, 35, 6067-6070. b) Hoffmann, M.; Burkhart, F.; Hessler, G.; Kessler, H. Helv. Chim. Acta, 1996, 79, 1519-1532. c) Hoffmann, M.; Kessler, H. Tetrahedron Lett. 1997, 38, 1903-1906.
- a) Grundler, G.; Schmidt, R. R. Liebigs Ann. Chem. 1984, 1826-1847. b) Briner, K.; Vasella, A. Helv. Chim. Acta, 1987, 70, 1341-1356.
- The coupling constant between H-2 and H-3 is approx. 3 Hz, in contrast to approx 10 Hz in the usual 4C_1 -conformation. The coupling constant between H-1 and H-2 is approx. 2 Hz.
- The alkylated benzyl ether was determined by NMR spectroscopy using a HMBC spectrum.